Zur Lebensweise von *Ceratites* und *Germanonautilus* im Muschelkalkmeer

SIEGFRIED REIN, Erfurt-Rhoda

Inhalt

1. Einleitung
2. Hydrostatische Gesetze
 2.1. Auftrieb und Gewicht
 2.2. Schweregleichgewicht
 2.3. Stabile Gehäuseorientierung und Lokomotion
3. Rückschlüsse auf die Lebensweise der Ceratiten
 3.1.1. Rückschlüsse aus echter Epökie von Placunopsis auf Ceratites
 3.1.1.1. Massnahmen zur Gewichtsverringerung
 3.1.1.2. Regulierung durch Vergrößerung der Auftreibskraft
 3.2. Rückschlüsse aus der Gehäusemorphologie von Ceratites
 3.2.1. Normales Gehäusewachstum
 3.2.2. Gehäusemorphologie nach traumatischen und pathologischen Ereignissen
 3.2.2.1. Exogene Reaktion - form* fastigata* CREDNER (1875)
 3.2.2.2. Exogene Reaktion - form* recta* REIN (1994)
 3.2.2.3. Endogene Reaktion - form* conclusa* REIN (1989)
 3.2.2.4. Endogene Reaktion - form* septadesformata* REIN (1990)
4. Rückschlüsse auf Biologie, ökologische Einnischung und Populationsverhalten von *Ceratites*
 4.1. Der Ceratiten-Protoconch
4.2. Phragmokon und Siphon
4.3. Wachstum und Lebensalter der Ceratiten
4.4. Ceratiten-Mundwerkzeuge
4.4.1. Rückschlüsse auf die Ernährungsweise
4.4.2. Rückschlüsse auf die Populations-Zusammensetzung
4.5. Rekonstruktion der Lebensweise von *Ceratites*
4.5.1. Schlussfolgerung zur Lokomotion
4.5.2. Schlussfolgerung zur Biologie und Ökologie
5. Rückschlüsse auf die Lebensweise von *Germanonautilus*
 5.1. Biomechanische Analyse der Befunde aus dem fossilen Material
 5.1.1. Rückschlüsse aus echter Epökie von Placunopsis auf *Germanonautilus*
 5.1.2. Rückschlüsse aus der Gehäusemorphologie
 5.1.2.1. Normales Gehäusewachstum
 5.1.2.2. Gehäuse-Anomalien
 5.2. Rückschlüsse auf Biologie, ökologische Einnischung und Populationsverhalten von *Germanonautilus*
 5.2.1. Embryonaalentwicklung, Wachstum und Lebensalter
 5.2.2. Kiefer und Ernährungsweise
 5.3. Rekonstruktion der Lebensweise von *Germanonautilus*
 5.3.1. Schlussfolgerung zur Lokomotion
 5.3.2. Schlussfolgerung zur Biologie und Ökologie
 5.3.3. Literatur

Zusammenfassung

1. Einleitung

Das Naturhistorische Museum Schloss Bertholdsburg eröffnete im Frühjahr 2001 eine neue Ausstellung: „Auf den Spuren unserer Umwelt. 300 Millionen Jahre Thüringen“. In modellhaften Nachbildungen sind im „Meeresdiorama der Muschelkalkzeit“ auch *Ceratites* und *Germanonautilus* aus dem Oberen Muschelkalk zu sehen, obwohl die biologische Organisation ihres Weichkörpers noch im...

Abb. 1: Die Rekonstruktion des Ammonitieres von Fraas (1910) ist ein salomonischer Kompromiss, denn er lässt dem Betrachter bewusst die Möglichkeit offen, sich die Ammoniten als kriechende oder schwimmende „Tintenfische“ vorzustellen.

2. Hydrostatische Gesetze

Bei Rekonstruktionsversuchen zur Lebensweise fossil Lebewesen fällt allgemein auf, dass häufig die physikalischen Bedingungen nicht konsequent in Betracht gezogen werden. Für das funktionelle Verständnis der morphologischen Besonderheiten der Schalencephalopoden ist jedoch die Berücksichtigung der hydrostatischen Gesetze unumgänglich. Einerseits bietet das Gehäuse dem Weichkörper einen optimalen Schutz. Andererseits ermöglicht gerade das starre Gehäuse mit seinem vorgegebe-

2.2. Schwembgleichgewicht

Der Nachweis, dass die fossilen Vertreter tatsächlich einen solchen Zustand erreichen konnten oder ihn zumindest anstreben, ist bis jetzt jedoch noch nicht er- bracht worden.

2.3. Stabile Gehäuseorientierung und Lokomotion

Wie bereits hervorgehoben, greift der Auftriebskraft im Körpermittelpunkt (AMP) und die Gewichtskraft im Kör- perschwerpunkt (KSP) an. Diesbezügliche grundlegende

Abb. 3: Nautilus und seine begrenzten Möglichkeiten zur Regelung des Schwembgleichgewichtes (Abbildungen aus KEUPP & RIEDEL 1995); 3a: Nautilus zu Beginn der Aquarienhaltung; 3b: Das gleiche Individuum unmittelbar nach seinem Tode; 3c: dito. mit Median- schnitt

Abb. 4: Die Bedeutung der Wohnkammerlänge für die stabile Mündungsorientierung

4c: Ammoniten (Schema) mit 300° langer Wohnkammer ohne Ballastwasser oder Ceratit (Schema) mit 180° langer Wohnkammer mit bis auf 300° aufgefülltem Ballastwasser in Schwebestellung. Auftriebsmitelpunkt (AMP) und Körperschwerpunkt (KSP) liegen unmittelbar über einander und die Gehäuseendung ist maximal nach oben gewandert. In dieser Situation ist das Gehäuse völlig instabil und würde vom geringsten Trikterschub (T) nur noch wie ein Windrad rotierend bewegt.

3. Rückschlüsse auf die Lebensweise der Ceratiten

Die Gehäuse-Morphologie der Ceratiten des Oberen Muschelkalks ist im Verlauf ihrer phylogenetischen Entwicklung vielen Veränderungen unterworfen. Lediglich die Länge der Wohnkammer bleibt ab der pulcher Zone mit 180° konstant. In ihr befindet sich der Weichkörper, der mit seinem spezifischen Gewicht (g ~ 1,056) die Lage des Körperschwerpunktes entscheidend beeinflusst. Wie das Schema (Abb. 4a) zeigt, wäre Ceratites mit der vorgegebenen Gehäuseorientierung und ohne Ballastwasser durchaus schwimmen und schwimmen-fähig. Da jedoch Auftriebsmitelpunkt (AMP) und Körperschwerpunkt (KSP) sehr dicht beieinander liegen, ist die Gehäuseendung hochgradig stabil und die durch Trikterschreibung erreichbare Horizontalbeschleunigung begrenzt. Sie eignet sich weder zum Beutefang noch zur Fluchtmöglichkeit vor Fressfeinden.

gen, ob Ceratiten wirklich eine dieser Fortbewegungsformen benutzen haben können.

3.1. Biomechanische Analyse der Befunde aus dem fossilen Material

3.1.1. Rückschlüsse aus echter Epöke von *Placuncopsis* auf *Ceratites*

3.1.1.1. Massnahmen zur Gewichtsverringerung

Verringerung des Ballastwassers im Phragmokon.

Bau zusätzlicher Kammern = Verkürzung der Wohnkammerlänge (Abb. 3)

Diese Form des Gewichtsausgleichs wird am abnormal gewachsenen *Nautilus pompeius* beispielhaft sichtbar (s. Abb. 3). An Stelle eines normalen Gehäusewachstums werden an der Gehäusemündung nur noch überdimensionierte pathologische Kalkwülste ausgeschieden. Es kommt zu keiner weiteren Volumenzunahme, d.h. die Auftriebskraft wird nicht ausgleichend mit erhöht. Zur Erhaltung des Schwebegleichgewichts musste diese einseitige Gewichtszunahme mit dem Bau zusätzlicher

Abb. 5: Lokomotionsmodell der Ammoniten (aus: WESTERMANN 1996)

Am vorliegenden Beispiel wird der allgemeine Trend sichtbar, dass die Autoren prinzipiell weder die von der Wohnkammerlänge abhängige Stellung der Gehäusemündung noch die Gehäusestabilität berücksichtigen. Ammoniten sind stets mit der Gehäusezerrung von *Nautilus* dargestellt, denn mit einer nach oben gerichteten Gehäusemündung würde eine horizontale Lokomotion mit Trichterschub wenig glaubwürdig.

3.1.1.2. Erhöhung der Auftriebskraft durch Querschnittsvergrößerung an der Gehäusemündung

3.2. Rückschlüsse aus der Gehäusemorphologie von Ceratites

3.2.1. Normales Gehäusewachstum

Auf die entscheidende Bedeutung einer stabilen Gehäuselagerung für die Lokomotion wurde mehrfach hingewiesen. Das diesbezügliche Verhalten der Ceratiten ist ein weiteres Indiz dafür, dass sich Ceratiten nicht frei beweglich in der Wasserflache aufhalten konnten.

3.2.2. Rückschlüsse aus der Gehäusemorphologie nach traumatischen und pathologischen Ereignissen

Weil Nautilus sein Schwebegleichgewicht lediglich bedingt regulieren kann (Abb. 3), ist er nach Verletzungen nur befähigt limitierte Schalenverluste und kleine Epithelverletzungen an der Gehäusemündung zu regenerieren. Nautilus ist nicht in der Lage, Abweichungen vom gene
datisch vorgegebenen Bauplan, die eine Änderung der Auftriebskraft zur Folge hätten, zu akzeptieren. Anders die Ceratiten. Sowohl exogen traumatisch verursachte Volumenänderungen als auch endogen pathologische Anomalien werden ohne sichtbare Beeinträchtigung der Ontogenie toleriert. Aus der Art und Weise, wie
Ceratiten auf traumatische oder pathologische Geschehnisse reagieren, können indirekt wertvolle biologische und biomechanische Rückschlüsse gezogen werden.

3.2.2.1. Exogene Reaktion = forma fastigata

3.2.2. Exogene Reaktion = forma refecta

3.2.3. Endogene Reaktion = forma conclusa

Das Einziehen von Sekundärshalen unter die Primärspalte des Gehäuses gehört zu den häufigsten pathologischen Bildungen der Ceratiten (forma conclusa, Rein 1989, 1993a, 1994c). Sie sind in dieser Form bislang ausschließlich auf Steinkernen der germanischen Ceratiten nachgewiesen und verdanken ihre Erhaltung der
Abb. 8: *Ceratites spinosus*, DE=121 mm; forma *refecta* REIN (1994), Original REIN (1998).
Die Bruchkante befindet sich ca. 90° vor dem Phragmokon. Sie umfasst die gesamte Wohnkammer von der linken bis zur rechten Flanke. Durch das Zurückziehen des Mundsaumepithels an die Bruchkante entsteht eine Aufwölbung. Sie bewirkt eine Querschnittsvergrößerung des Gehäuses um 9% und dadurch eine zusätzliche Vergrößerung der Auftriebskraft.

Der Nachweis für dieses geschichtete Laminat der Originalechale kann mit den postmortal durch Diagenese entstandenen Conellen (Rein 1993c, Rein & Krause 1994) erbracht werden. Durch die so gebildeten Hohlräume, egal ob sie mit Gas, Flüssigkeit oder Conellensubstanz gefüllt sind, verringert sich das dem Weichkörper zur Verfügung stehende Wohnkammervolumen z.T. beträchtlich (Abb. 9a; b). Beim Verlagern der Untergeschichte auf den Phragmokon entzieht sich dieser Bereich dem regulierbaren Kammerapparat. Trotz beständig wechselnder Gewichtskraft, die erschwerend teilweise asymmetrisch ansetzt, erfolgen keine gegensteuernden Maßnahmen.

3.2.4. Endogene Reaktion = forma septadeformata

4. Rückschlüsse auf Biologie, ökologische Einmisschung und Populationenverhalten

Die bisherigen Schlussfolgerungen zum hydrostatischen Verhalten der Ceratiten basieren auf der Barometricschutz der Gesetze der Hydrostatic. Hinweise auf die biologische Organisation des Weichkörpers und dessen Funktion sind nur über indirekte Deutungen zu erlangen. Eine Möglichkeit ergibt sich aus der Interpretation der vom Weichkörper geformten Bildungen. Dafür eignen sich die fossil erhaltenen anorganischen Bestandteile des Kammerapparates (Protoconch, Bau der Septen), diogenetisch veränderte Reste der Originalechale (Conellen), Bestandteile des Weichkörpers (Mundwerkzeuge) und Wechselbeziehungen mit Epochen.

4.1. Der Ceratiten-Protoconch

Die ca. 0,5 mm große Anfangskammer der germanischen Ceratiten konnte bislang erst 18 x angeschliffen

Abb. 11: Medianschnitt Ceratites compressus, DPhr=48 mm, Protoconch = 0,5 mm, 100 Septen, Original Rein (1997), Rechnet man bei einer Bauzeit von 8 bis 12 Wochen für die letzten Septen kontinuierlich auf eine Woche Bauzeit für die ersten Septen zurück, so erhält man ein Alter zwischen 8 und 10 Jahren, 10 cm grosse Individuen haben somit ein geschätztes Alter von 10 – 15 Jahren, 25 cm grosse Ceratiten >30 Jahre.

4.2. Phragmokon und Siphon

4.3. Wachstum und Lebensalter der Ceratiten

Interessant ist in diesem Zusammenhang allerdings der gemeinsame Bezug auf die Lebensweise, denn es sind immer Organismen mit gemischter Lokomotion und einem niederigen Energiestoffwechsel.

4.4. Mundwerkzeuge

4.4.1. Rückschlüsse auf die Ernährungsweise

Der Bau der Mundwerkzeuge und ihre Taphonomie beweist, dass sie nicht wie Kiefer beisend gegeneinander tätig sein konnten. Obwohl das Vorhandensein einer

4.4.2. Rückschlüsse auf die Populationszusammensetzung

- die fossil erhaltenen Gehäuse adulter Individuen verkörpern stets nur einen Bruchteil der Populationsgröße
- die Population besteht nie aus gleichaltrigen Individuen, sondern immer aus einer „Generationenge- meinschaft”
- die Alterspyramide der Population (wenig adulte Individuen und proportional anwachsend immer mehr juvenile Individuen) charakterisiert ihre ökologische Einmischung als „r”- Strategen. Mit der hohen Reproduktionsrate belegen sie ihre Bedeutung in der Nahrungskette im Muschelkalkmeer
- die autochthone Entstehung der räumlich begrenzten Lagerstätten setzt eine vagil-benthische Lebensweise
voraus und ist wegen der konstant bleibenden Zusammensetzung der Altersstufen mit frei in der Wassertemperatur beweglichen Individuen unvereinbar
• das Zusammenleben aller Generationen im Populationsverband ist in der Invertebratenbiologie ohne Beispiel

4.5. Rekonstruktion der Lebensweise von Ceratites

4.5.1. Schlussfolgerungen zur Lokomotion

Bei konsequenter Anwendung der hydrostatischen Gesetze auf die Befunde der Ceratiten werden zwei eindeutige Aussagen möglich:
• Ceratiten waren nicht in der Lage, sich kontrolliert mit Trichterschub schwimmend zu bewegen. Jede Loko-
motion erforderte eine Kraft, die größer als der negative resultierende Auftrieb des Ceratiten sein musste. Die geringe Gehäusestabilität zeigt, dass dies mit einem Rückstosseffekt nicht zu realisieren war. Somit kann geschlossen werden, dass Ceratiten zum Schwimmen mit Trichterschub nicht befähigt waren und eine bodenbezogene Lebensweise hatten.

4.5.2. Schlussfolgerungen zur Biologie und Ökologie

5. Rückschlüsse auf die Lebensweise von Germanonautilus

5.1. Biomechanische Analyse der Befunde aus dem fossilen Material

5.1.1. Rückschlüsse aus echter Epökie von Placunopsis auf Germanonautilus

5.1.2. Rückschlüsse aus der Gehäusemorphologie

5.1.2.1. Normales Gehäusewachstum

5.1.2.2. Gehäuse-Anomalien

Ein auffälliges Merkmal von Germanonauátilus ist das generelle Fehlen von Weichkörper-Verletzungen, die mit volumenändernden Folgen am Gehäuse die Auftriebskraft verändern würde. Ganz selten sind lediglich geringfügige Schalenverletzungen. Diese völlige Übereinstimmung mit der Strategie des rezenten Nautilus könnte als Indiz dafür gedeutet werden, dass Germanonauátilus

5.2. Rückschlüsse auf Biologie, ökologische Einnahme und Populationsverhalten von Germanonautilus

5.2.1. Embryonalentwicklung, Wachstum und Lebensalter

5.2.2. Kieler und Ernährungsweise

Die aus dem Oberen Muschelkalk schon lange bekannten Conchorhynchus ariostris und Ryncholithecis hirundo werden seit jeher Germanonautilus als Unter- bzw. als Unterkiefer zugeschrieben. Die Besonderheit der Funktion des am Kieferapparat besteht darin, dass der bewegliche Oberkiefer sich scherend gegen den feststehenden Unterkiefer bewegt. Die so von der Beute abgebissenen Stücke werden anschließend durch die Radula weiter zerkleinert.

Von Nautilus ist bekannt, dass er welche Nahrung (Krebse, Aas usw.) bevorzugt. Er ist zwar in der Lage aus Gehäuserändern von Artgenossen Teile auszubrechen, für eine durophage Ernährung ist jedoch sein schnabelartiger Horn-Kiefer nicht geeignet. Germanonautilus besaß bedeutend kleiner dimensio- nierte Kiefer. Ihre kompakte kalkige Ausbildung, verbunden mit einer kräftigen Schiessmusculatur, ermöglichen aber sicherlich eine durophage Ernährungsweise. Ger-
manonautus ernährte sich carnivor, war aber mit seinem plumpen Gehäuse sicherlich kein guter Jäger. Obendrein wurde die Auswahl der Beutetiere durch die geringe Kiefergröße eingeschränkt (Rein 1998). Er hatte zudem einen hohen Energiebedarf, weil er beim aktiven Schwimmen das Gehäuse gegen die Schwerkraft beanspruchte. Da bei Mollusken die Effizienz der Energieausnutzung sehr gering ist, war sein Aktionsradius von vornherein begrenzt. So kamen als Beute lediglich lichtbeständige Organismen wie Krebstiere, dünnwellige Muscheln, Gastropoden und die in großen Populationen am Boden lebenden dünnwelligen juvenilen Cera
titen in Betracht.

5.3. Rekonstruktion der Lebensweise von Germano
autus

5.3.1. Schlussfolgerung zur Lokomotion

Bei konsequenter Anwendung der hydrostatischen Ge
setze auf die Befunde von Germanonautus werden drei eindeutige Aussagen möglich:

• die Fähigkeit, dass Germanonautus ein Schwebe
gleichgewicht austarieren konnte, kann aufgrund der Befunde mit echter Epökpie mit Sicherheit ausge
schlossen werden

• die spezielle Gehäusesmorphologie mit der biomechana
nisch günstigen ventralen Trichtermündung ermög
licht Germanonautus eine Lokomotion mit Trichter
schub

• im Unterschied zum kraftsparenden Schwimmen von Nautilus im Schwebe- und Schwemmgleichgewicht benötigt Germanonautus dafür jedoch eine Kraft, die größer ist als der negative resultierende Auftrieb.

5.3.2. Schlussfolgerung zur Biologie und Ökologie

Die biologische Organisation des Germanonautus weist keine Gemeinsamkeiten mit dem C terrainorganismus auf. Obwohl er zum aktiven Schwimmen mit Trichterschub befähigt ist, lebt er wegen seines unefektiven Energieumsatzes vorwiegend bodenbezogen. Mit seiner nektobenthischen Lebensweise ernährt sich Germanonautus carnivor wahrscheinlich von benthischen Orga
nismen wie dünnwelligem Muscheln, Gastropoden und juvenilen Cera
titen. Germanonautus hat mit seiner Lebensweise als „k“-Strategie eine geringe Reproduktionsrate.

Dank

Den Herren Marco Fischer (Apolda) und Sebastian Brand (Erfurt) danke ich für die Hilfe bei der phantasie
vollen Umsetzung der Ideen zur Weichkörperegestaltung und Anfertigung der Modelle. Herrn Dipl. Ing. Klaus Ebel (Markdorf) bin ich für seine wertvollen fachlichen Hin
weise und die Hilfe bei den Übersetzungsarbeiten eben
so zu Dank verpflichtet wie Herrn Dr. Ralf Werneburg (NHM Schlesingen) für seine jahrelange Unterstützung meiner Arbeit. Den Herren Dr. F. Martin J und H. Martin (Kronach) möchte ich für die großzügige Bereitstellung von Sammlungsmaterial danken und Herrn Falko Behr (Erfurt) für die Anfertigung einiger Fotos.

Literatur

– thorbecke Species, Bd. 6: 165 S., Stuttgart.

479, 1 Taf., 1 Beil., Stuttgart.

- (1999c): Ceratitenkiefer in Konservatflügelstätten des oberen Muschelkalkes. – Terra Nostra, 99/8: S. 61, Zürich

